
erwin Data Modeler

Editing Forward Engineering Templates

Release 12.1

Legal Notices

This Documentation, which includes embedded help systems and electronically distributed
materials (hereinafter referred to as the “Documentation”), is for your informational pur-
poses only and is subject to change or withdrawal by Quest Software, Inc and/or its affiliates
at any time. This Documentation is proprietary information of Quest Software, Inc and/or its
affiliates and may not be copied, transferred, reproduced, disclosed, modified or duplicated,
in whole or in part, without the prior written consent of Quest Software, Inc and/or its affil-
iates

If you are a licensed user of the software product(s) addressed in the Documentation, you
may print or otherwise make available a reasonable number of copies of the Documentation
for internal use by you and your employees in connection with that software, provided that
all Quest Software, Inc and/or its affiliates copyright notices and legends are affixed to each
reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the
period during which the applicable license for such software remains in full force and effect.
Should the license terminate for any reason, it is your responsibility to certify in writing to
Quest Software, Inc and/or its affiliates that all copies and partial copies of the Docu-
mentation have been returned to Quest Software, Inc and/or its affiliates or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, QUEST SOFTWARE, INC. PROVIDES THIS
DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT
LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL QUEST SOFTWARE, INC. BE LIABLE TO
YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE
USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF QUEST
SOFTWARE, INC. IS EXPRESSLY ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR
DAMAGE.

The use of any software product referenced in the Documentation is governed by the applic-
able license agreement and such license agreement is not modified in any way by the terms
of this notice.

The manufacturer of this Documentation is Quest Software, Inc and/or its affiliates.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States
Government is subject to the restrictions set forth in FAR Sections 12.212, 52.227-14, and
52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or their suc-
cessors.

Copyright © 2023 Quest Software, Inc and/or its affiliates All rights reserved. All trademarks,
trade names, service marks, and logos referenced herein belong to their respective com-
panies.

Contact erwin
Understanding your Support

Review support maintenance programs and offerings.

Registering for Support

Access the erwin support site and click Sign in or Sign up to register for product support.

Accessing Technical Support

For your convenience, erwin provides easy access to "One Stop" support for all editions of
erwin Data Modeler, and includes the following:

Online and telephone contact information for technical assistance and customer ser-
vices

Information about user communities and forums

Product and documentation downloads

erwin Support policies and guidelines

Other helpful resources appropriate for your product

For information about other erwin products, visit http://erwin.com/products.

Provide Feedback

If you have comments or questions, or feedback about erwin product documentation, you
can send a message to techpubs@erwin.com.

erwin Data Modeler News and Events

Visit www.erwin.com to get up-to-date news, announcements, and events. View video
demos and read up on customer success stories and articles by industry experts.

https://support.quest.com/erwin-data-modeler/2021 r2
https://support.quest.com/erwin-data-modeler/2021 r2
https://support.quest.com/erwin-data-modeler/2021 r2
http://erwin.com/products/
mailto:techpubs@erwin.com
http://erwin.com/

Contents

Introduction 6

Documentation 7

Template Location 8

Terminology 9

Template Editing 10

Opening the Template Editor 11

Option Sets 12

The Template Editor 13

Template Editing Example 16

Editing Forward Engineering Templates Guide 6

Introduction

AllFusion erwin DM r7.0 introduced the Template Language component (TLX) as a new tem-
plate/macro language. TLX is employed in a variety of places in the product where text
expansion is necessary.

The Forward Engineering and Alter Script components use TLX in order to generate the
necessary SQL statements. You can edit these Forward Engineering and Alter Script tem-
plates to provide custom SQL output using erwin DM r7.3 and later.

For the rest of this document, the term "templates" refers to the Forward Engineering and
Alter Script templates.

Templates were present in AllFusion erwin DM r7.0 through AllFusion erwin
DM r7.2. However, as noted in the documentation of those releases, these
templates used an interim format and changes to them were unsupported.
Prior versions of templates cannot be used in erwin DM r7.3 and later. Both
the file format and the template syntax have changed with the production
version of templates. Changes to templates are supported. The file format
and template syntax will be supported in future versions of the product and
changes made will be usable when the software is upgraded.

This section contains the following topics

Documentation
Template Location
Terminology
Template Editing

Introduction

Editing Forward Engineering Templates Guide 7

Documentation

For effective template editing, you need to be familiar with erwin DM's metamodel, and
have a working knowledge of TLX.

The erwin DM metamodel is documented in the erwin Data Modeler Metamodel Reference
bookshelf. The syntax for TLX and the macros available are documented in the Template Lan-
guage and Macro Reference.

Documentation

Editing Forward Engineering Templates Guide 8

Template Location

By default, the templates are installed to a subdirectory of the Application Data directory of
your machine.

The forward engineering template files have an extension of .fet and are named to cor-
respond with the DBMS to which they apply. The templates are available in the C:\Pro-
gramData\erwin\Data Modeler\9.98\Templates subdirectory where this product is installed.
For example, the default template file for Oracle is Oracle.fet.

You will find other files in the Templates directory that have different exten-
sions. These are templates for other purposes and are not covered by this
document.

If you want to restore the default template files, the install program places read-only copies
of the files in the BackupFiles\Templates subdirectory where this product is installed.

Template Location

Editing Forward Engineering Templates Guide 9

Terminology

The terminology used differs slightly from that of older versions of erwin DM. The following
table describes the differences in the terminology:

Term Description
Template A piece of TLX code. In this document, it refers specifically to templates used for

the purpose of generating SQL for Forward Engineering or Alter Script. For
example, the Create View template is used to generate a CREATE VIEW state-
ment.

Template
File

A collection of templates for a specific purpose stored externally. For example,
the Oracle Template File (Oracle.fet) contains all the templates for Forward
Engineering and Alter Script against an Oracle database.

Macro A function supported by TLX that evaluates to a specific value or provides a spe-
cific control structure. For example, the Date macro evaluates to a string rep-
resenting the current date/time.

Terminology

Editing Forward Engineering Templates Guide 10

Template Editing

This section provides an overview of template editing.

Template Editing

Editing Forward Engineering Templates Guide 11

Opening the Template Editor

You can edit template files in any text editor that supports plain text format. However, the
Template Editor in erwin DM provides several features that make editing templates easier,
such as auto-expansion and macro selection.

To open the editor, click Forward Engineer, Forward Engineering Templates on the Actions
menu.

This menu item is available whenever a physical or logical/physical model is active. The phys-
ical side of a logical/physical model does not need to be displayed in the workspace to edit
its templates.

You can also open the editor when you click the Edit button in either the Forward Engineer
Schema Generation or the Alter Script Schema Generation dialog, as shown in the following
illustration:

Opening the Template Editor

Editing Forward Engineering Templates Guide 12

Option Sets

Each physical or logical/physical model has a FE_Option_Set object associated with it that
holds the option settings you select. There is a default that is created by erwin DM and you
can create new ones. Though several FE_Option_Set objects can exist in the model, only one
can be designated as active at a time.

When the Template Editor expands a template, it takes into account the current settings for
the model. In erwin DM, options are not saved to the model immediately upon selection in
the user interface. To write the settings to the model and have them available to the Tem-
plate Editor, you must either save them explicitly with the Save or Save As buttons, or save
them implicitly when you click the Generate or Preview buttons, as shown in the following
illustration:

Option Sets

Editing Forward Engineering Templates Guide 13

The Template Editor

The Template Editor is shown in the following illustration:

The following list describes the tools and controls available in the Template Editor:

Opens a different template file.

Saves the template file or lets you make a copy of the file.

Prints the selected template.

Inserts a new template into the template file.

The Template Editor

Editing Forward Engineering Templates Guide 14

Marks or unmarks the selected template for deletion and deletes the template at the
time of saving the template file.

Searches for text in the template.

Repeats your last search in the template.

Replaces text in the template.

Toggles auto-indenting in the template.

Toggles sorting of macros by categories.

Invokes the Template Editor Preferences dialog.

Invokes the Macro Categories dialog.

Launches the online help.

Sample Context

Allows you to select the starting object that will be used for the expansion of the tem-
plate. By default, the editor attempts to select an Entity object when it is invoked. For
each object listed, it shows the name of the object, its type, and a string representing
its ownership chain in the model to allow objects with the same name to be dis-
tinguished from each other.

The Template Editor

Editing Forward Engineering Templates Guide 15

Consult the Template Language and Macro Reference document to
ensure you have a basic understanding of the context stack.

Since a large model might have sufficient objects to exceed Windows' limits for a
combo box, only three objects of each type in the model are added to the list. If you
want to see all objects in your model, select the Show All check box.

Templates

Shows all templates found in the template file. They are categorized based on their
names as follows: Create, Alter, Drop, and Insert templates; Clause templates
(reusable fragments employed by other templates); and Miscellaneous templates.
Double-click a template to edit it. By default, when the Template Editor is invoked, it
attempts to select the Create Entity template.

Macros

Shows the macros supported in TLX. By default, they are listed alphabetically. You can
toggle the display to show them grouped by categories. You can create new cat-
egories and add macros to them using the Macro Categories dialog. The icon next to
the macro indicates its deprecation status. You can learn about the various deprec-
ation levels in the Template Language and Macro Reference document, and suppress
the display of deprecated macros using the Template Editor Preferences dialog.
Double-click a macro to insert it into the template at the current location.

Template Source

Shows the TLX code of the template. It is syntax-colored, but you can change the color
choices in the Template Editor Preferences dialog.

Expanded Text

Shows the result of expanding the template against the current context object. Altern-
atively, it may show error information if a mistake is made in editing the template. It is
syntax-colored, but you can change the color choices in the Template Editor Prefer-
ences dialog.

The Template Editor

Editing Forward Engineering Templates Guide 16

Template Editing Example

This section provides an example of creating a template to demonstrate the mechanics of
editing a template. This example creates a very simple version of a CREATE TABLE template
and tests it against the EMPLOYEE table in the emovies.erwin sample model.

This example assumes the target server of your model is SQL Server 2000.
However, the process is the same for all supported target servers.

The template produced here will not cover the full syntax of a CREATE TABLE statement.
Once you understand the principles here, you can examine the full templates shipped with
erwin DM to guide you in customizing your SQL.

Follow these steps to create the example template:

Basic Template - Version 1

The first pass demonstrates the steps to produce the following SQL:

 create table EMPLOYEE
 (
 employee_first_name varchar(20),
 employee_address varchar(20),
 employee_phone integer,
 employee_address_2 varchar(20),
 employee_number varchar(20),
 soc_sec_number integer
 hire_date datetime,
 salary integer,
 email varchar(20),
 store_number integer,
 supervisor varchar(20)

)

Getting Started

Template Editing Example

Editing Forward Engineering Templates Guide 17

Template files are quite extensive in order to cover all of the SQL required for erwin DM's
processes. The easiest way to start is to make a copy of an existing template file and edit it
to produce the custom SQL you want:

Go to the <install folder>\erwin\Data Modeler\[rn]\Templates directory, make a copy
of SqlServer.fet, and name it SqlServer2.fet. This prevents unwanted changes to the
real template file.

Start erwin DM and load emovies.erwin.

Click Forward Engineering Templates on the Tools menu to invoke the Template
Editor.

Click the Open tool and load SqlServer2.fet.

Make sure the EMPLOYEE [Entity] table is selected in the Sample Context box. If you
cannot find it, turn on Show All.

Entry Point Templates

The Forward Engineering component of erwin DM looks for templates with certain names to
use as the starting point for a particular SQL command. For a CREATE statement, the name
of the entry point template is Create XXX where XXX is the class name for the object type.
The entry points for other types of statements follow this pattern; DROP statements have
entry points of Drop XXX, ALTER statements have entry points of Alter XXX, and so on.

Consult the erwin Metamodel Reference to locate the class names for various
object and property types.

The class name for a table is Entity, so the Create Entity template is edited:

Select the Create Entity template (it is probably already selected) and press F2.
Rename that template to Create Entity old.

Select the New Template tool and name the new template Create Entity.

At this point, the Template Editor attempts to expand the new template and displays a mes-
sage that an undetermined parsing error occurred - this is expected.

The Template

This version of the template uses three macros: Property, ForEachOwnee, and ListSeparator.

Template Editing Example

Editing Forward Engineering Templates Guide 18

Consult the Template Language and Macro Reference document if you are
uncertain of TLX syntax, or to see full descriptions of the macros used here.

Type the following code into the Template Source field of the editor:

 "create table " Property("Physical_Name")
 "\n("
 ForEachOwnee("Attribute")
 {
 ListSeparator(",")
 "\n\t" Property("Physical_Name") " " Property("Physical_
Data_Type")
 }
 "\n)"

After a moment, the following text appears in the Expanded Text field:

 create table EMPLOYEE
 (
 employee_first_name varchar(20),
 employee_address varchar(20),
 employee_phone integer,
 employee_address_2 varchar(20),
 employee_number varchar(20),
 soc_sec_number integer
 hire_date datetime,
 salary integer,
 email varchar(20),
 store_number integer,
 supervisor varchar(20)

)

Splitting SQL Scripts - Version 2

The Forward Engineering component needs to be able to split up the various SQL state-
ments that are generated to the script. Parsing the script during generation is too slow, so
tokens are placed into the script to indicate the split points. These tokens are inserted by a
macro called FE::EndOfStatement.

Template Editing Example

Editing Forward Engineering Templates Guide 19

Tokens representing instructions to the Forward Engineering component are all delimited by
double @ symbols (@@).

Put your cursor in the Template Source field after the last line.

Double-click the FE::EndOfStatement macro in the Macros tree.

After a moment, the following text appears in the Expanded Text field:

 create table EMPLOYEE
 (
 employee_first_name varchar(20),
 employee_address varchar(20),
 employee_phone integer,
 employee_address_2 varchar(20),
 employee_number varchar(20),
 soc_sec_number integer
 hire_date datetime,
 salary integer,
 email varchar(20),
 store_number integer,
 supervisor varchar(20)
)
 go

@@*EOS*@@

Subsidiary Templates - Version 3

Describes subsidiary templates and the use of the Execute macro.

Execute Macro

One template can delegate some of the processing to another template using the Execute
macro. Another template is created called Emit FK and it is delegated to produce the foreign
key constraints for the table:

Select the New Template tool and name the new template Emit FK.

Add the following as temporary code for the new template. This code will be replaced
later in the example.

Template Editing Example

Editing Forward Engineering Templates Guide 20

 "Got here"

Double-click the Create Entity template again to go back to editing it and add the fol-
lowing text at the end. The use of the Equal macro causes nothing to emit if the cur-
rent Key_Group is not a foreign key.

 ForEachOwnee("Key_Group")
 {
 Equal(Left(Property("Key_Group_Type"), 2), "IF")
 Execute("Emit FK")
 FE::EndOfStatement
 }

After a moment, the following text appears in the Expanded Text field:

 create table EMPLOYEE
 (
 employee_first_name varchar(20),
 employee_address varchar(20),
 employee_phone integer,
 employee_address_2 varchar(20),
 employee_number varchar(20),
 soc_sec_number integer
 hire_date datetime,
 salary integer,
 email varchar(20),
 store_number integer,
 supervisor varchar(20)
)
 go
 @@*EOS*@@
 Got here
 go
 @@*EOS*@@
 Got here
 go
 @@*EOS*@@

Controlling the Context Stack

Template Editing Example

Editing Forward Engineering Templates Guide 21

The Got here statement can now be replaced in the Emit FK template with code to emit an
ALTER statement that adds the foreign key. Since such a statement requires information
from the Entity object, the Attribute objects owned by it, the Relationship object, and the
Key_Group_Member objects, the template code will have to control the context stack to
make sure that properties are read from the correct object.

This is not the most efficient way to produce the intended output, but it
accomplishes the task without complicating the example with a lot of new
macros.

Double-click on the Emit FK template to edit it.

Replace the existing text with the following code:

 "alter table " PushOwner Property("Physical_Name") Pop
 "\nadd foreign key ("
 ForEachOwnee("Key_Group_Member")
 {
 ListSeparator(",") Property("Physical_Name")
 }
 ") references "
 PushReference("Relationship_Ref")
 PushReference("Parent_Entity_Ref")
 Property("Physical_Name")
 Pop
 Pop
 " ("
 ForEachMigratingColumn
 {
 ListSeparator(",") Property("Physical_Name")
 }
 ")"
 PushReference("Relationship_Ref")
 "\n\ton delete "
 UpperCase(Property("Parent_Delete_Rule"))
 Pop

Template Editing Example

Editing Forward Engineering Templates Guide 22

Ignore the parsing error that appears in the Expanded Text field (because the tem-
plate was not entered from the correct starting point) and double-click the Create
Entity template to get the entry point template to evaluate.

After a moment, the following text appears in the Expanded Text field:

 create table EMPLOYEE
 (
 employee_first_name varchar(20),
 employee_address varchar(20),
 employee_phone integer,
 employee_address_2 varchar(20),
 employee_number varchar(20),
 soc_sec_number integer
 hire_date datetime,
 salary integer,
 email varchar(20),
 store_number integer,
 supervisor varchar(20)
)
 go
 @@*EOS*@@
 alter table EMPLOYEE
 add foreign key (store_number) references STORE (store_number)
 on delete NO ACTION
 go
 @@*EOS*@@
 alter table EMPLOYEE
 add foreign key (supervisor) references EMPLOYEE (employee_number)
 on delete NO ACTION
 go
 @@*EOS*@@

Sorting the Output - Version 4

One of the foreign keys in the EMPLOYEE table is self-referential. However, the other is not;
it references the STORE table. If the order of processing the Entity objects results in the
STORE table emitting after the EMPLOYEE table, the ALTER statement creating the foreign
key will fail.

Template Editing Example

Editing Forward Engineering Templates Guide 23

To avoid this, tokens can be emitted that instruct the Forward Engineering component to
sort types of statements into groups. These groups are called buckets. Any statement placed
in Bucket #1 is emitted before any statement placed in Bucket #2, which is before any state-
ment in Bucket #3, and so on. There can be an arbitrary number of buckets. The macro
FE::Bucket inserts the bucket tokens.

Insert the following code as the first line of the Create Entity template:

 FE::Bucket("10")

Insert the following code right after the first occurrence of the FE::EndOfStatement
macro:

 FE::Bucket("20")

After a moment, the following text appears in the Expanded Text field:

 @@*B=10*@@
 create table EMPLOYEE
 (
 employee_first_name varchar(20),
 employee_address varchar(20),
 employee_phone integer,
 employee_address_2 varchar(20),
 employee_number varchar(20),
 soc_sec_number integer
 hire_date datetime,
 salary integer,
 email varchar(20),
 store_number integer,
 supervisor varchar(20)
)
 go
 @@*EOS*@@
 @@*B=20*@@
 alter table EMPLOYEE
 add foreign key (store_number) references STORE (store_number)
 on delete NO ACTION
 go
 @@*EOS*@@

Template Editing Example

Editing Forward Engineering Templates Guide 24

When the templates are executed against the entire model, all of the CREATE TABLE state-
ments (Bucket #10) will emit before any of the ALTER statements (Bucket #20).

Template Editing Example

	Introduction
	Documentation
	Template Location
	Terminology
	Template Editing
	Opening the Template Editor
	Option Sets
	The Template Editor

	Template Editing Example

